1 зам предел. Первый замечательный предел: теория и примеры

Собраны формулы, свойства и теоремы, применяемые при решении задач, допускающих решение с помощью первого замечательного предела. Даны подробные решения примеров с использованием первого замечательного предела его следствий.

Содержание

См. также: Доказательство первого замечательного предела и его следствий

Применяемые формулы, свойства и теоремы

Здесь мы рассмотрим примеры решений задач на вычисление пределов, в которых используется первый замечательный предел и его следствия.

Ниже перечислены формулы, свойства и теоремы, которые наиболее часто применяются в подобного рода вычислениях.

  • Первый замечательный предел и его следствия:
    .
  • Тригонометрические формулы для синуса, косинуса , тангенса и котангенса :
    ;
    ;
    ;
    при , ;
    ;
    ;
    ;
    ;
    ;
    .

Примеры решений

Пример 1

Для этого.
1. Вычисляем предел .
Поскольку функция непрерывна для всех x , и в том числе в точке , то
.
2. Поскольку функция не определена (и, следовательно, не является непрерывной) при , то нам нужно убедиться, что существует такая проколотая окрестность точки , на которой . В нашем случае при . Поэтому это условие выполнено.
3. Вычисляем предел . В нашем случае он равен первому замечательному пределу:
.

Таким образом,
.
Аналогичным образом, находим предел функции в знаменателе:
;
при ;
.

И наконец, применяем арифметические свойства предела функции :
.

Применим .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 2

Найдите предел:
.

Решение с помощью первого замечательного предела

При , , . Это неопределенность вида 0/0 .

Преобразуем функцию за знаком предела:
.

Сделаем замену переменной . Поскольку и при , то
.
Аналогичным образом имеем:
.
Поскольку функция косинус непрерывна на всей числовой оси, то
.
Применяем арифметические свойства пределов:

.

Решение с помощью эквивалентных функций

Применим теорему о замене функций эквивалентными в пределе частного .
При . Из таблицы эквивалентных функций находим:
при ; при .
Тогда .

Пример 3

Найти предел:
.

Подставим в числитель и знаменатель дроби:
;
.
Это неопределенность вида 0/0 .

Попробуем решить этот пример с помощью первого замечательного предела. Поскольку в нем значение переменной стремится к нулю, то сделаем подстановку, чтобы новая переменная стремилась не к , а к нулю. Для этого от x перейдем к новой переменной t , сделав подстановку , . Тогда при , .

Предварительно преобразуем функцию за знаком предела, умножив числитель и знаменатель дроби на :
.
Подставим и воспользуемся приведенными выше тригонометрическими формулами.
;


;

.

Функция непрерывна при . Находим ее предел:
.

Преобразуем вторую дробь и применим первый замечательный предел:
.
В числителе дроби мы сделали подстановку .

Применяем свойство предела произведения функций:

.

.

Пример 4

Найти предел:
.

При , , . У нас неопределенность вида 0/0 .

Преобразуем функцию под знаком предела. Применим формулу:
.
Подставим :
.
Преобразуем знаменатель:
.
Тогда
.

Поскольку и при , то сделаем подстановку , и применим теорему о пределе сложной функции и первый замечательный предел:
.

Применяем арифметические свойства предела функции:
.

Пример 5

Найдите предел функции:
.

Нетрудно убедиться, что в этом примере мы имеем неопределенность вида 0/0 . Для ее раскрытия, применим результат предыдущей задачи, согласно которому
.

Введем обозначение:
(П5.1) . Тогда
(П5.2) .
Из (П5.1) имеем:
.
Подставим в исходную функцию:

,
где ,
,
;
;
;
.

Используем (П5.2) и непрерывность функции косинус. Применяем арифметические свойства предела функции.
,
здесь m - отличное от нуля число, ;
;


;
.

Пример 6

Найти предел:
.

При , числитель и знаменатель дроби стремятся к 0 . Это неопределенность вида 0/0 . Для ее раскрытия, преобразуем числитель дроби:
.

Применим формулу:
.
Подставим :
;
,
где .

Применим формулу:
.
Подставим :
;
,
где .

Числитель дроби:

.
Функция за знаком предела примет вид:
.

Найдем предел последнего множителя, учитывая его непрерывность при :



.

Применим тригонометрическую формулу:
.
Подставим ,
. Тогда
.

Разделим числитель и знаменатель на , применим первый замечательный предел и одно из его следствий:

.

Окончательно имеем:
.

Примечание 1. Также можно было применить формулу
.
Тогда .

См. также:

Замечательных пределов существует несколько, но самыми известными являются первый и второй замечательные пределы. Замечательность этих пределов состоит в том, что они имеют широкое применение и с их помощью можно найти и другие пределы, встречающиеся в многочисленных задачах. Этим мы и будем заниматься в практической части данного урока. Для решения задач путём приведения к первому или второму замечательному пределу не нужно раскрывать содержащиеся в них неопределённости, поскольку значения этих пределов уже давно вывели великие математики.

Первым замечательным пределом называется предел отношения синуса бесконечно малой дуги к той же дуге, выраженной в радианной мере:

Переходим к решению задач на первый замечательный предел. Заметим: если под знаком предела находится тригонометрическая функция, это почти верный признак того, что это выражение можно привести к первому замечательнному пределу.

Пример 1. Найти предел .

Решение. Подстановка вместо x нуля приводит к неопределённости:

.

В знаменателе - синус, следовательно, выражение можно привести к первому замечательному пределу. Начинаем преобразования:

.

В знаменателе - синус трёх икс, а в числителе всего лишь один икс, значит, нужно получить три икс и в числителе. Для чего? Чтобы представить 3x = a и получить выражение .

И приходим к разновидности первого замечательного предела:

потому что неважно, какая буква (переменная) в этой формуле стоит вместо икса.

Умножаем икс на три и тут же делим:

.

В соответствии с замеченным первым замечательным пределом производим замену дробного выражения:

Теперь можем окончательно решить данный предел:

.

Пример 2. Найти предел .

Решение. Непосредственная подстановка вновь приводит к неопределённости "нуль делить на нуль":

.

Чтобы получить первый замечательный предел, нужно, чтобы икс под знаком синуса в числителе и просто икс в знаменателе были с одним и тем же коэффициентом. Пусть этот коэффициент будет равен 2. Для этого представим нынешний коэффициент при иксе как и далее, производя действия с дробями, получаем:

.

Пример 3. Найти предел .

Решение. При подстановке вновь получаем неопределённость "нуль делить на нуль":

.

Наверное, вам уже понятно, что из исходного выражения можно получить первый замечательный предел, умноженный на первый замечательный предел. Для этого раскладываем квадраты икса в числителе и синуса в знаменателе на одинаковые множители, а чтобы получить у иксов и у синуса одинаковые коэффициенты, иксы в числителе делим на 3 и тут же умножаем на 3. Получаем:

.

Пример 4. Найти предел .

Решение. Вновь получаем неопределённость "нуль делить на нуль":

.

Можем получить отношение двух первых замечательных пределов. Делим и числитель, и знаменатель на икс. Затем, чтобы коэффициенты при синусах и при иксах совпадали, верхний икс умножаем на 2 и тут же делим на 2, а нижний икс умножаем на 3 и тут же делим на 3. Получаем:

Пример 5. Найти предел .

Решение. И вновь неопределённость "нуль делить на нуль":

Помним из тригонометрии, что тангенс - это отношение синуса к косинусу, а косинус нуля равен единице. Производим преобразования и получаем:

.

Пример 6. Найти предел .

Решение. Тригонометрическая функция под знаком предела вновь наталкивает на мысль о применении первого замечательного предела. Представляем его как отношение синуса к косинусу.

Теперь со спокойной душой переходим к рассмотрению замечательных пределов .
имеет вид .

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к 0.

Необходимо вычислить предел

Как видно, данный предел очень похож на первый замечательный, но это не совсем так. Вообще, если Вы замечаете в пределе sin, то надо сразу задуматься о том, возможно ли применение первого замечательного предела.

Согласно нашему правилу №1 подставим вместо х ноль:

Получаем неопределенность .

Теперь попробуем самостоятельно организовать первый замечательный предел. Для этого проведем нехитрую комбинацию:

Таким образом мы организовываем числитель и знаменатель так, чтобы выделить 7х. Вот уже и проявился знакомый замечательный предел. Желательно при решении выделять его:

Подставим решение первого замечательного примера и получаем:

Упрощаем дробь:

Ответ: 7/3.

Как видите – все очень просто.

Имеет вид , где e = 2,718281828… – это иррациональное число.

Вместо переменной х могут присутствовать различные функции, главное, чтобы они стремились к .

Необходимо вычислить предел

Здесь мы видим наличие степени под знаком предела, значит возможно применение второго замечательного предела.

Как всегда воспользуемся правилом №1 – подставим вместо х:

Видно, что при х основание степени , а показатель – 4x > , т.е. получаем неопределенность вида :

Воспользуемся вторым замечательным пределом для раскрытия нашей неопределенности, но сначала надо его организовать. Как видно – надо добиться присутствия в показателе, для чего возведем основание в степень 3х, и одновременно в степень 1/3x, чтобы выражение не менялось:

Не забываем выделять наш замечательный предел:

Вот такие действительно замечательные пределы !
Если у вас остались какие то вопросы по первому и второму замечательным пределам , то смело задавайте их в комментариях.
Всем по возможности ответим.

Также вы можете позаниматься с педагогом по этой теме.
Мы рады предложить вам услуги подбора квалифицированного репетитора в вашем городе. Наши партнеры оперативно подберут для вас хорошего преподавателя на выгодных для вас условиях.

Мало информации? - Вы можете !

Можно писать математические вычисления в блокнотах. В блокноты с логотипом (http://www.blocnot.ru) индивидуальным писать намного приятней.

Первый замечательный предел часто применяется для вычисления пределов содержащих синус, арксинус, тангенс, арктангенс и получающихся при них неопределенностей ноль делить на ноль.

Формула

Формула первого замечательного предела имеет вид: $$ \lim_{\alpha\to 0} \frac{\sin\alpha}{\alpha} = 1 $$

Замечаем, что при $ \alpha\to 0 $ получается $ \sin\alpha \to 0 $, тем самым в числетеле и в знаменателе имеем нули. Таким образом формула первого замечательного предела нужна для раскрытия неопределенностей $ \frac{0}{0} $.

Для применения формулы необходимо, чтобы были соблюдены два условия:

  1. Выражения, содержащиеся в синусе и знаменателе дроби совпадают
  2. Выражения, стоящие в синусе и знаменателе дроби стремятся к нулю

Внимание! $ \lim_{x\to 0} \frac{\sin(2x^2+1)}{2x^2+1} \neq 1 $ Хотя выражения под синусом и в знаменателе одинаковые, однако $ 2x^2+1 = 1 $, при $ x\to 0 $. Не выполнено второе условие, поэтому применять формулу НЕЛЬЗЯ!

Следствия

Достаточно редко в задания можно увидеть чистый первый замечательный предел, в котором можно сразу было бы записать ответ. На практике всё немного сложнее выглядит, но для таких случаев будет полезно знать следствия первого замечательного предела. Благодаря им можно быстро вычислить нужные пределы.

$$ \lim_{\alpha\to 0} \frac{\alpha}{\sin\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\sin(a\alpha)}{\sin(b\alpha)} = \frac{a}{b} $$

$$ \lim_{\alpha\to 0} \frac{tg\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{\arcsin\alpha}{\alpha} = 1 $$

$$ \lim_{\alpha\to 0} \frac{arctg\alpha}{\alpha} = 1 $$

Примеры решений

Рассмотрим первый замечательный предел, примеры решения которого на вычисление пределов содержащих тригонометрические функции и неопределенность $ \bigg[\frac{0}{0}\bigg] $

Пример 1
Вычислить $ \lim_{x\to 0} \frac{\sin2x}{4x} $
Решение

Рассмотрим предел и заметим, что в нём присутствует синус. Далее подставим $ x = 0 $ в числитель и знаменатель и получим неопределенность нуль делить на нуль: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \frac{0}{0} $$ Уже два признака того, что нужно применять замечательный предел, но есть небольшой нюанс: сразу применить формулу мы не сможем, так как выражение под знаком синуса отличается от выражения стоящего в знаменателе. А нам нужно, чтобы они были равны. Поэтому с помощью элементарных преобразований числителя мы превратим его в $ 2x $. Для этого мы вынесем двойку из знаменателя дроби отдельным множителем. Выглядит это так: $$ \lim_{x\to 0} \frac{\sin2x}{4x} = \lim_{x\to 0} \frac{\sin2x}{2\cdot 2x} = $$ $$ = \frac{1}{2} \lim_{x\to 0} \frac{\sin2x}{2x} = \frac{1}{2}\cdot 1 = \frac{1}{2} $$ Обратите внимание, что в конце $ \lim_{x\to 0} \frac{\sin2x}{2x} = 1 $ получилось по формуле.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ \lim_{x\to 0} \frac{\sin2x}{4x} =\frac{1}{2} $$
Пример 2
Найти $ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} $
Решение

Как всегда сначала нужно узнать тип неопределенности. Если она нуль делить на нуль, то обращаем внимание на наличие синуса: $$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = \frac{0}{0} = $$ Данная неопределенность позволяет воспользоваться формулой первого замечательного предела, но выражение из знаменателя не равно аргументу синуса? Поэтом "в лоб" применить формулу нельзя. Необходимо умножить и разделить дробь на аргумент синуса: $$ = \lim_{x\to 0} \frac{(x^3+2x)\sin(x^3+2x)}{(2x-x^4)(x^3+2x)} = $$ Теперь по свойствам пределов расписываем: $$ = \lim_{x\to 0} \frac{(x^3+2x)}{2x-x^4}\cdot \lim_{x\to 0} \frac{\sin(x^3+2x)}{(x^3+2x)} = $$ Второй предел как раз подходит под формулу и равен единице: $$ = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4}\cdot 1 = \lim_{x\to 0} \frac{x^3+2x}{2x-x^4} = $$ Снова подставляем $ x = 0 $ в дробь и получаем неопределенность $ \frac{0}{0} $. Для её устранения достоточно вынести за скобки $ x $ и сократить на него: $$ = \lim_{x\to 0} \frac{x(x^2+2)}{x(2-x^3)} = \lim_{x\to 0} \frac{x^2+2}{2-x^3} = $$ $$ = \frac{0^2 + 2}{2 - 0^3} = \frac{2}{2} = 1 $$

Ответ
$$ \lim_{x\to 0} \frac{\sin(x^3+2x)}{2x-x^4} = 1 $$
Пример 4
Вычислить $ \lim_{x\to0} \frac{\sin2x}{tg3x} $
Решение

Вычисление начнём с подстановки $ x=0 $. В результате получаем неопределенность $ \frac{0}{0} $. Предел содержит синус и тангенс, что намекает на возможное развитие ситуации с использованием формулы первого замечательного предела. Преобразуем числитель и знаменатель дроби под формулу и следствие:

$$ \lim_{x\to0} \frac{\sin2x}{tg3x} = \frac{0}{0} = \lim_{x\to0} \frac{\frac{\sin2x}{2x}\cdot 2x}{\frac{tg3x}{3x}\cdot 3x} = $$

Теперь видим в числителе и знаменателе появились выражения подходящие под формулу и следствия. Аргумент синуса и аргумент тангенса совпадают для соответствующих знаменателей

$$ = \lim_{x\to0} \frac{1\cdot 2x}{1\cdot 3x} = \frac{2}{3} $$

Ответ
$$ \lim_{x\to0} \frac{\sin2x}{tg2x} = \frac{2}{3} $$

В статье: "Первый замечательный предел, примеры решения" было рассказано о случаях, в которых целесообразно использовать данную формулу и её следствия.

Первый замечательный предел выглядит следующим образом: lim x → 0 sin x x = 1 .

В практических примерах часто встречаются модификации первого замечательного предела: lim x → 0 sin k · x k · x = 1 , где k – некоторый коэффициент.

Поясним: lim x → 0 sin (k · x) k · x = п у с т ь t = k · x и з x → 0 с л е д у е т t → 0 = lim t → 0 sin (t) t = 1 .

Следствия первого замечательного предела:

  1. lim x → 0 x sin x = lim x → 0 = 1 sin x x = 1 1 = 1
  1. lim x → 0 k · x sin k · x = lim x → 0 1 sin (k · x) k · x = 1 1 = 1

Указанные следствия достаточно легко доказать, применив правило Лопиталя или замену бесконечно малых функций.

Рассмотрим некоторые задачи на нахождение предела по первому замечательному пределу; дадим подробное описание решения.

Пример 1

Необходимо определить предел, не используя правило Лопиталя: lim x → 0 sin (3 x) 2 x .

Решение

Подставим значение:

lim x → 0 sin (3 x) 2 x = 0 0

Мы видим, что возникла неопределенность нуль делить на нуль. Обратимся к таблице неопределенностей, чтобы задать метод решения. Сочетание синуса и его аргумента дает нам подсказку об использовании первого замечательного предела, однако для начала преобразуем выражение. Произведем умножение числителя и знаменателя дроби на 3 x и получим:

lim x → 0 sin (3 x) 2 x = 0 0 = lim x → 0 3 x · sin (3 x) 3 x · (2 x) = lim x → 0 sin (3 x) 3 x · 3 x 2 x = = lim x → 0 3 2 · sin (3 x) 3 x

Опираясь на следствие из первого замечательного предела, имеем: lim x → 0 sin (3 x) 3 x = 1 .

Тогда приходим к результату:

lim x → 0 3 2 · sin (3 x) 3 x = 3 2 · 1 = 3 2

Ответ: lim x → 0 sin (3 x) 3 x = 3 2 .

Пример 2

Необходимо найти предел lim x → 0 1 - cos (2 x) 3 x 2 .

Решение

Подставим значения и получим:

lim x → 0 1 - cos (2 x) 3 x 2 = 1 - cos (2 · 0) 3 · 0 2 = 1 - 1 0 = 0 0

Мы видим неопределенность нуль делить на нуль. Произведем преобразование числителя с использованием формул тригонометрии:

lim x → 0 1 - cos (2 x) 3 x 2 = 0 0 = lim x → 0 2 sin 2 (x) 3 x 2

Видим, что теперь здесь возможно применение первого замечательного предела:

lim x → 0 2 sin 2 (x) 3 x 2 = lim x → 0 2 3 · sin x x · sin x x = 2 3 · 1 · 1 = 2 3

Ответ: lim x → 0 1 - cos (2 x) 3 x 2 = 2 3 .

Пример 3

Необходимо произвести вычисление предела lim x → 0 a r c sin (4 x) 3 x .

Решение

Подставим значение:

lim x → 0 a r c sin (4 x) 3 x = a r c sin (4 · 0) 3 · 0 = 0 0

Мы видим неопределенность делить нуль на нуль. Произведем замену:

a r c sin (4 x) = t ⇒ sin (a r c sin (4 x)) = sin (t) 4 x = sin (t) ⇒ x = 1 4 sin (t) lim x → 0 (a r c sin (4 x)) = a r c sin (4 · 0) = 0 , значит t → 0 при x → 0 .

В таком случае, после замены переменной, предел принимает вид:

lim x → 0 a r c sin (4 x) 3 x = 0 0 = lim t → 0 t 3 · 1 4 sin (t) = = lim t → 0 4 3 · t sin t = 4 3 · 1 = 4 3

Ответ: lim x → 0 a r c sin (4 x) 3 x = 4 3 .

Для более полного понимания материала статьи следует повторить материал темы «Пределы, основные определения, примеры нахождения, задачи и решения».

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter