Презентация на тему: Химический состав клетки и её строение. Презентация "Химический состав клетки и её строение" по биологии – проект, доклад Химические соединения в клетке

Клетки живых организмов отличаются друг от друга не только по строению и выполняемым функциям, но и по химическому составу. В состав разных клеток входят практически одни и те же химические элементы.

В клетке встречается около 80 химических элементов Периодической системы Дмитрия Ивановича Менделеева. Это практически все элементы, которые присутствуют на нашей планете и известны на сегодняшний день. Выполняемая функция данных элементов мало изучена, так как из 80 элементов только у 24 определена функция, которую они выполняют в клетке.

Химические элементы, которые встречаются в клетке, делят на три большие группы: макроэлементы , микроэлементы и ультрамикроэлементы .

Распределение химических элементов в клетке неравномерно. Большую часть, примерно 98% от массы любой клетки, составляют макроэлементы . В первую очередь, это кислород (75%), углерод (15%), водород (8%), азот (3%). Из этих элементов состоят молекулы органических веществ, а кислород и водород входят в состав воды, которая является основным неорганическим веществом клетки. Так же к макроэлементам относят фосфор, калий, серу, железо, магний, натрий и кальций. Массовая доля любого макроэлемента в клетке составляет не менее 0,001%.


Химические элементы, на долю которых в клетке приходится от 0,001% до 0,000001% (читать: от 1 тысячной до 1 миллионной процента) называются микроэлементами . Это цинк, йод, медь, марганец, фтор, кобальт, бром и другие.

Процентное содержание в организме того или иного элемента никоим образом не характеризует степень его важности и необходимости в организме.

Например, кобальт входит в состав витамина В 12 , йод - в состав гормонов тироксина и тиронИна, а медь - в состав ферментов, катализирующих окислительно-восстановительные процессы. Кроме того, медь участвует в переносе кислорода в тканях моллюсков. Значительное число ферментов с разнообразным механизмом действия содержат ионы цинка, марганца, кобальта и молибдена.

Кремний встречается у диатомовых водорослей, хвощей, губок и моллюсков. В хрящах и связках позвоночных животных его содержание может достигать нескольких сотых долей процента.

Бор влияет на рост растений, фтор входит в состав эмали зубов и костей.

На долю ультрамикроэлементов приходится менее 0,000001% от массы клетки. К этой группе относятся радий, цезий, ртуть, уран, золото и другие.

Все вещества клетки делят на две группы: неорганические и органические .

Основным неорганическим веществом клетки является вода. Благодаря своим физико-химическим свойствам вода – это хороший растворитель, следовательно, является средой для протекания химических реакций в клетке. Благодаря полярности молекул вода легко растворяет ионные соединения (соли, кислоты, основания). Вещества, хорошо растворимые в воде, называют гидрофильными . Жиры, нуклеиновые кислоты и некоторые белки плохо растворяются в воде или не растворяются вообще. Такие вещества называют гидрофобными .

Вода играет важную роль в жизнедеятельности организмов благодаря своим свойствам:

    Благодаря высокой теплоёмкости , вода способна поглощать тепловую энергию при минимальном повышении собственной температуры. Выделение воды (транспирация у растений, потоотделение у животных) предохраняет организм от перегревания.

    Обладая высокой теплопроводностью , вода способствует равномерному распределению тепла по организму.

    Практически не сжимаясь , вода создаёт тУргорное давление, определяющее объём и упругость клеток.

    Благодаря образованию водородных связей между молекулами воды и молекулами других веществ, вода обладает оптимальным для биологических систем значением силы поверхностного натяжения, благодаря которойосуществляется капиллярный кровоток и движение растворов в растениях.

Минеральные соли в клетке могут находиться в растворённом или не растворённом состояниях. Растворимые соли диссоциируют на ионы. Наиболее важными катионами являются:

калий и натрий , которые отвечают за перенос веществ через клеточную мембрану и участвуют в возникновении и проведении нервного импульса;

кальций принимает участие в процессах сокращения мышечных волокон и свертывании крови. Нерастворимые соли кальция участвуют в формировании костей и зубов, карбонат кальция - в образовании раковин моллюсков, укреплении оболочек клеток некоторых видов растений;

магний входит в состав хлорофилла;

железо входит в состав ряда белков, в том числе гемоглобина.

Цинк входит в состав молекулы гормона поджелудочной железы - инсулина, медь участвует в процессах фотосинтеза и дыхания.

Важнейшими анионами являются фосфат-анион , входящий в состав АТФ и нуклеиновых кислот, и остаток угольной кислоты , регулирующий колебания рН среды.

Органические вещества клетки представлены углеводами, липидами, белками, нуклеиновыми кислотами, АТФ, витаминами и гормонами.

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Химический состав клетки и её строение

Общие сведения Химический состав клеток растений и животных сходен, что говорит о единстве их происхождения. В клетках обнаружено более 80 химических элементов. Макроэлементы: O, C, N, H. - 98% Микроэлементы: K, P, S, Ca, Mg, Cl, Na . - 1, 9 % Ультрамикроэлементы: Cu, I, Zn, Co, Br. - 0 ,01 %

Неорганические соединения Самое распространенное неорганическое соединение в клетках живых организмов – вода. Он а поступает в организм из внешней среды; у животных может образовываться при расщеплении жиров, белков, углеводов. Вода находится в цитоплазме и её органеллах, вакуолях, ядре, межклетниках. Функции: 1. Растворитель 2. Транспорт веществ 3. Создание среды для химических реакций 4. Участие в образовании клеточных структур (цитоплазма)

Неорганические соединения Минеральные соли необходимы для нормальной жизнедеятельности клеток. Например, н ерастворимые соли кальция и фосфора обеспечивают прочность костной ткани.

Углеводы Э то органические соединения, в состав которых входят водород (Н), углерод (С) и кислород (О) . Углеводы образуются из воды (Н 2 О) и углекислого газа (СО 2) в процессе фотосинтеза. Ф руктоза и глюкоза постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус. Функции: 1. Энергетическая (при распаде 1 г глюкозы освобождается 17,6 кДж энергии) 2. Структурная (хитин в скелете насекомых и в стенке клеток грибов) 3. Запасающая (крахмал в растительных клетках, гликоген – в животных)

Липиды Г руппа жироподобных органических соединений, нерастворимых в воде, но хорошо растворимых в бензоле, бензине и т.д. Жиры – один из классов липидов, сложные эфиры глицерина и жирных кислот. В клетках содержится от 1 до 5% жиров. Функции: 1. Э нергетическая (при окислении 1 г жира выделяется 38,9 кДж энергии) 2. С труктурная (фосфолипиды – основный элементы мембран клетки) 3. З ащитная (термоизоляция)

Белки Э то биополимеры, мономерами которых являются аминокислоты. В строении молекулы белка различают первичную структуру – последовательность аминокислотных остатков; вторичную – это спиральная структура, которая удерживается множеством водородных связей. Третичная структура белковой молекулы – это пространственная конфигурация, напоминающая компактную глобулу. Она поддерживается ионными, водородными и дисульфидными связями Четвертичная структура образуется при взаимодействии нескольких глобул (например, молекула гемоглобина состоит из четырех таких субъединиц). Утрата белковой молекулой своей природной структуры называется денатурацией.

Нуклеиновые кислоты Нуклеиновые кислоты обеспечивают хранение и передачу наследственной (генетической) информации. ДНК (дезоксирибонуклеиновая кислота) – это молекула, состоит из двух закрученных цепей. ДНК РНК Состоит из азотистого основ-ия (аденина (А) А-Т А-У цитозина (Ц), тимина (Т) или гуанина (Г)), Ц-Г Ц-Г пентозы (дезоксирибозы) и фосфата. РНК (рибонуклеиновая кислота) – это молекула, состоящая из одной цепи нуклеотидов. Состоит из четырех азотистых оснований, но вместо тимина (Т) в РНК урацил (У), а вместо дезоксирибозы – рибоза.

АТФ АТФ (аденозинтрифосфорная кислота) – это нуклеотид, относящийся к группе нуклеиновых кислот. Молекула АТФ состоит из азотистого основания аденина, рибозы и трех остатков фосфорной кислоты. Отщепление одной молекулы фосфорной кислоты происходит с помощью ферментов и сопровождается выделением 40 кДж энергии. Энергию АТФ клетка использует в процессах синтеза белка, при движении, при производстве тепла, при проведении нервных импульсов, в процессе фотосинтеза и т.д. АТФ является универсальным аккумулятором энергии в живых организмах.

Клеточная теория В 1665 году английский естествоиспытатель Роберт Гук, наблюдая под микроскопом срез пробки дерева, обнаружил пустые ячейки, которые он назвал «клетками». Современная клеточная теория включает следующие положения: * все живые организмы состоят из клеток; клетка – наименьшая единица живого; * клетки всех одноклеточных и многоклеточных организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ; * размножение клеток происходит путем их деления, и каждая новая клетка образуется в результате деления исходной (материнской) клетки; все многоклеточные организмы развиваются из одной клетки * в сложных многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани; из тканей состоят органы, которые тесно взаимосвязаны и подчинены нервным и гуморальным системам регуляции.

Органоиды клетки Цитоплазма - п олужидкая среда, в которой находятся ядро клетки и все органоиды. Цитоплазма на 85% состоит из воды и на 10% - из белков. Биологическая мембрана Биологическая мембрана: 1)отграничивает содержимое клетки от внешней среды, 2)образует стенки органоидов и оболочку ядра, 3)разделяет содержимое цитоплазмы на отдельные отсеки. Наружный и внутренний слои мембраны (тёмные) образованы молекулами белков, а средний (светлый) – двумя слоями молекул липидов. Биологическая мембрана обладает избирательной проницаемостью.

Эндоплазматическая сеть (ЭПС) Э то сеть каналов, трубочек, пузырьков, цистерн, расположенных внутри цитоплазмы. Различают гладкую ЭПС и шероховатую (гранулярную) , несущую на себе рибосомы. Мембраны гладкой ЭПС участвуют в жировом и углеводном обмене. Рибосомы прикрепляются к мембране шероховатой ЭПС.

Рибосомы М елкие сферические органоиды размером от 15 до 35 нм. Б ольшая часть рибосом синтезируются в ядрышках и через поры ядерной мембраны поступают в цитоплазму, где располагаются либо на мембранах ЭПС, либо свободно.

Комплекс Гольджи Комплекс Гольджи представляет собой стопку из 5-10 плоских цистерн, по краям которых отходят ветвящиеся трубочки и мелкие пузырьки. Комплекс Гольджи – наружная клеточная мембрана. К омплекс Гольджи принимает участие в образовании лизосом, вакуолей, в накоплении углеводов, в построении клеточной стенки.

Лизосомы Лизосомы -ш аровидные тельца, покрыты е мембраной и содержа щие около 30 ферментов, способных расщеплять белки, нуклеиновые кислоты, жиры и углеводы. Образование лизосом происходит в комплексе Гольджи. При повреждении мембран лизосом, содержащиеся в них ферменты, разрушают клетку и временные органы эмбрионов и личинок, например хвост и жабры в процессе развития головастиков лягушек.

Пластиды Содержатся только в растительных клетках. Хлоропласты по форме напоминают двояковыпуклую линзу и содержат зеленый пигмент хлорофилл. Хлоропласты обладают способностью улавливать солнечный свет и синтезировать с его помощью органические вещества при участии АТФ. Хромопласты – пластиды, содержащие растительные пигменты (кроме зеленого), придающие окраску цветкам, плодам, стеблям и другим частям растений. Лейкопласты – бесцветные пластиды, содержащиеся чаще всего в неокрашенных частях растений – корнях, луковицах и т.п. В них могут синтезироваться и накапливаться белки, жиры и полисахариды (крахмал).

Митохондрии В идны в световой микроскоп в виде гранул, палочек, нитей величиной от 0,5 до 7 мкм. Стенка митохондрий состоит из двух мембран – наружной, гладкой и внутренней, образующей выросты – кристы. Основными функциями митохондрий являются: - окисление органических соединений до диоксида углерода и воды; - - накопление химической энергии в макроэргических связях АТФ.

Органоиды движения Включения К клеточным органоидам движения относят реснички и жгутики Функция этих органоидов заключается или в обеспечении движения (например, у простейших) или для продвижения жидкости вдоль поверхности клеток (например, в дыхательном эпителии для продвижения слизи) Включения – это непостоянные компоненты цитоплазмы, содержание которых меняется в зависимости от функционального состояния клетки. .

Ядро По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15-30 %) и РНК (12 %). 99 % ДНК клетки сосредоточено в ядре. Ядро выполняет две главные функции: 1) хранение и воспроизведение наследственной информации; 2) регуляция процессов обмена веществ, протекающих в клетке. В состав ядра входят ядрышко, состоящее из белка и р-РНК; хроматин (хромосомы) и ядерный сок, представляющий собой раствор белков, нуклеиновых кислот, углеводов и ферментов, минеральных солей.

Прокариоты и эукариоты Не имеют оформленного ядра Наследственная информация передается через молекулу ДНК, которая образует нуклеотид. Функции эукариотических органоидов выполняют ограниченные мембранами полости Б актерии и С ине – зеленые водоросли Е сть четко оформленные ядра, имеющие собственную оболочку. Ядерная ДНК у них заключена в хромосомы. В цитоплазме имеются различные органоиды, выполняющие специфические функции Ц арство Г рибов, Р астений и Ж ивотных.


1 слайд

2 слайд

Урок №1. Химический состав клетки. Органические и неорганические вещества. Цель: познакомиться с химическими веществами клетки. План: 1.Химические элементы. 2.Органические вещества клетки 3.Неорганические вещества клетка

3 слайд

4 слайд

1. Химические элементы. Наиболее распространенные химические элементы: кислород (О2), углерод (С), азот(N2), водород (Н2) В организм человека весом 70 кг. входят: 45,5 кг. кислорода (О2),12,6 кг. углерода (С), 7кг.водорода (Н2), 2,1кг азота (N2), 1,4кг кальция (Са), 700гр фосфора (Р). На все остальные приходится 700 гр. (калий, сера, натрий, хлор, магний, железо, цинк, свинец, мышьяк, золото, олово и т.д.) * Известно 109 химических элементов. * 80 из них входят в состав клетки.

5 слайд

элемент Неорганическое вещество Органическое вещество Химическое соединение элемент элемент

6 слайд

7 слайд

8 слайд

Самое распространенное неорганическое вещество в живом организме –вода. Среднее содержание воды в в головном мозге -85% в костях – 20%, эмали зубов – 10%. тело медузы -95% Вода (Н2О) 1-Определяет объем и упругость клетки, 2-Участвует в химических реакциях. Химические реакции протекают только в водной среде. 3-Участвует в выводе вредных веществ из организма. 4-Способствует передвижению кислорода, углекислого газа и питательных веществ по организму. назад

9 слайд

Составляет до 1 % от массы клетки Самые распространенные соли натрия и калия. Суточная потребность человека в поваренной соли -9грамм. Минеральные соли 1- Обеспечивают выполнение такой функции организма как раздражимость. 2-Придают прочность костям, раковинам моллюсков. назад

10 слайд

Белок – основное вещество клетки. Если из клетки удалить всю воду, То 50% ее сухой массы составляют белки. Волосы, ногти, когти, перья, Копыта, яд змеи – это белок. Белки 1-Участвуют в формировании ядра, цитоплазмы клетки, ее органоидов. 2-Белок гемоглобин переносит кислород, придает красный цвет крови. 3-Движение мышцы 4-Защита организма от инфекций. 5-Свертывание крови назад

11 слайд

Глюкоза, сахароза, сахар который мы едим каждый день, клетчатка, крахмал - углеводы. В клубнях картофеля до 80% углеводов, а в клетках печени и мышц углеводов- до 5%. Углеводы 1-Основная функция - энергетическая. 2- Животные запасают углеводы в виде гликогена, растения в виде крахмала. 3-Опорная и защитная (входят в состав клеточных оболочек растений – клетчатка, образует наружный скелет насекомых и ракообразных – хитин.) назад

12 слайд

Жир - дает 30% всей энергии необходимой организму. У кита слой жира равен 1 метру. Из 1кг жира образуется 1.1 кг воды. Животные впадающие в спячку медведь, суслик. сурок благодаря запасам жира Могут не пить два месяца. Верблюды при переходе через пустыню Могут не пить две недели. Жиры 1- Запасной источник энергии 2-Опорная функция. Являются основным компонента клеточных и ядерных оболочек. 3-Внутренний резерв воды 4-Теплоизолятор. Предохраняет организм от потери тепла. назад

13 слайд

Нуклеиновая кислота от латинского «нуклеус» - ядро. Нуклеиновые кислоты 1-Передача и хранение наследственной информации. 2-входят в состав хромосом. назад

14 слайд

Проверь себя. Какой из изображенных продуктов наиболее богат белком? Следующий вопрос ДА НЕТ

15 слайд

16 слайд

17 слайд

Проверь себя. Какой из изображенных продуктов наиболее богат углеводами? Следующий вопрос ДА НЕТ

18 слайд

19 слайд

20 слайд

Проверь себя. Какой из изображенных продуктов наиболее богат жирами? Лабораторная работа

21 слайд

22 слайд


Клетки состоят из тех же химических элементов, которые образуют неживую природу.

Из 112 химических элементов периодической системы

Д. И. Менделеева в клетках живых организмов обнаружено примерно 25.

По количественному содержанию в клетке все химические элементы делят на 3 группы:

Макроэлементы

Ультрамикроэлементы

Микроэлементы

на их долю приходится (99%)

(в сумме менее, 001%)


Макроэлементы

Макроэлементы составляют основную массу вещества клетка на их долю приходится около 99%, из них 98 % приходится на четыре химических элемента:

кислород – 65%

углерод – 18%

водород – 10%

азот – 3%

И еще 1% приходится на долю 8 элементов:

кальций, фосфор,

хлор, калий, сера,

натрий, магний,

железо

Органогенные элементы – входят в состав белков, нуклеиновых кислот, липидов, углеводов, воды


Микроэлементы – преимущественно ионы металлов ( кобальта, меди, цинка и др.) и галогенов ( йода, брома

и др.). Они содержатся в количествах от 0,001% до 0,000001%.

Входят в состав гормонов, ферментов, витаминов.

Например, цинк – необходимый элемент ДНК- и РНК- полимераз, гормона инсулина. Йод входит в состав тироксина – гормона щитовидной железы.

Ультрамикроэлементы концентрация ниже 0,000001 %. К ним относят золото, уран, ртуть, селен и др.

Физиологическая роль большинства этих элементов в живых организмах не установлена


Химические соединения в клетке

Органические

Неорганические

Белки

Вода

Жиры

Минеральные соли

Углеводы

Нуклеиновые

кислоты


Неорганические вещества

Вода

Играет важнейшую роль в жизни клеток и живых организмов.

В клетке находится в двух формах: свободной и связанной. Свободная (95% всей воды) используется как растворитель и как среда протоплазмы. Связанная вода (4-5%) благодаря своей дипольности (атомы водорода имеет частично положительный заряд, а атом кислорода – частично отрицательный) связана, как с положительно, так и с отрицательно заряженными белками. В результате образуется водная оболочка вокруг белков, которая препятствует склеиванию их друг с другом.

Белок


Неорганические вещества. Вода

Роль воды в клетке определяется ее свойствами:

  • малые размеры молекул воды,
  • полярность молекул,
  • способность соединяться

друг с другом

водородными связями.

Н- связи между молекулами воды


Универсальный растворитель

Метаболическая

Структурная

Обладает высокой удельной теплоемкостью.

Высокая теплопроводность – обусловленная малыми размерами ее молекул.


Биологическая роль воды в клетке

Универсальный растворитель

для полярных веществ: солей, сахаров, кислот и др. Вещества, растворимые в воде, называются гидрофильными.

С неполярными веществами (гидрофобные – жиры) вода не образует Н-связи, а следовательно, не растворяет и не смешивается

с ними.

Структурная цитоплазма клеток содержит 60%-95% воды.

обуславливает осмос и тургорное давление, т.е. физические свойства клетки;


Биологическая роль воды в клетке

Обладает высокой удельной теплоемкостью – поглощает большое количество тепловой энергии при незначительном повышении +

собственной температуры.

Обладает наивысшей теплоемкостью из всех известных жидкостей. При повышении температуры окружающей среды часть тепловой энергии затрачивается на разрыв водородных связей между молекулами воды, при этом поглощается тепло. При охлаждении вновь возникают водородные связи между молекулами воды и выделяется тепло. Этим обусловлена её способность обеспечивать терморегуляцию клетки.

Высокая теплопроводность – обусловленная малыми размерами ее молекул.


Биологическая роль воды в клетке

Метаболическая – служит средой протекания химических реакций,

участвует в реакциях гидролиза (расщепление белков, углеводов происходит в результате их взаимодействия с водой);

В процессе фотосинтеза вода является источником электронов и атомов водорода.

Она же и источник свободного кислорода:

6H 2 O + 6CO 2 = C 6 H 12 O 6 + 6O 2


Минеральные соли

Минеральные соли

Роль в клетке

Состав

В диссоциирован-ном состоянии:

- катионы

С разностью концентрации ионов по разные стороны мембраны связывают активный перенос веществ через мембрану.

Состоят из катионов и анионов

Обеспечивают постоянство осмотического давления в клетке.

К, Na, Ca,

Анионы фосфорной кислоты создают фосфатную буферную систему, поддерживающую рН внутриклеточной среды организма на уровне 6,9.

Угольная кислота и ее анионы создают бикарбонатную буферную систему, которая поддерживает рН внеклеточной среды (плазма крови) на уровне 7,4.

- анионы HPO 4,

H 2 PO 4

HCO 3 , CI

Обеспечивают функциональную активность ферментов и др. макромолекул (например, анионы фосфорной кислоты входят в состав фосфолипидов, АТФ, нуклеотидов и др.; ион Fе 2 + входит в состав гемоглобина, магний в состав хлорофилла и т. д.).

В связанном с органическими веществами состоянием


Органические вещества

Нуклеиновые кислоты

Белки

Углеводы

Липиды

Органические соединения – это соединения углерода с другими элементами.


Органические вещества клетки

  • Полимер – это вещество с высокой молекулярной массой,

молекула которого состоит из большого количества

повторяющихся единиц – мономеров.

  • Биологические полимеры – органические соединения,

входящие в состав клеток живых организмов.

Основные органические соединения клетки

Биополимеры Мономеры органических веществ

Полисахариды(целлюлоза,

гликоген, крахмал)

Моносахариды (глюкоза, фруктоза)

Спирт, глицерин и жирные кислоты

Липиды и липоиды

Белки

Аминокислоты

Нуклеиновые кислоты

Нуклеотиды


Белки

это биополимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота.

В составе белков обнаружено 20 аминокислот

Аминокислоты отличаются одна от другой только радикалами.

Структура аминокислоты

карбоксильная группа

(кислотные свойства)

аминогруппа

(основные свойства)

углеводородный

радикал


Аминокислоты в составе природных белков

Сокращенное

название

Аминокислота

Аланин

Аргинин

Аспарагин

Аспарагиновая кислота

Валин

Гистидин

Глицин

Глутамин

Глутаминовая кислота

Лейцин

Лизин

Метионин

Пролин

Серин

Тирозин

Треонин

Триптофан

Фенилаланин

Цистеин


Аминокислоты

По способности человека синтезировать аминокислоты из предшественников, различают:

Заменимые аминокислоты – синтезируются в организме человека в достаточном количестве:

глицин, аланин, серин, цистеин, тирозин, аспарагин, глутамин, аспарагиновая и глутаминовые кислоты.

Незаменимые аминокислоты –

не синтезируются в организме человека. Необходимо их поступление

в организм с пищей:

валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин.

Полузаменимые аминокислоты – аргинин, гистидин.

Образуются в недостаточном количестве.

Их недостаток должен восполняться с белковой пищей.


Заменимые аминокислоты

H 2 N

H 2 N

H 2 N

H 2 N

Аспарги-

новая

кислота

CH 2

CH 2

CH 2

CH 2

Тирозин

Глутамин

CH 2

Глутами-

новая

кислота

CH 2

NH 2

H 2 N

H 2 N

H 2 N

H 2 C

CH 2

CH 2

Аланин

Аспарагин

CH 3

CH 2

H 2 C

Цистеин

О = C – NH 2

Пролин

H 2 N

H 2 N

CH 2 OH

Серин

Глицин


Полузаменимые аминокислоты

Для детей они являются незаменимыми

H 2 N

H 2 N

CH 2

CH 2

CH 2

Гистидин

Аргинин

CH 2

HC – N

NH 2


Незаменимые аминокислоты

H 2 N

H 2 N

H 2 N

H 2 N

H – C – OH

CH 2

CH 2

H 3 C – CH

Фенилаланин

Треонин

CH 2

CH 3

CH 3

Валин

Метионин

CH 3

H 2 N

H 2 N

CH 2

H 2 N

CH 2

CH 2

H – C – CH 3

H 2 N

Лизин

CH 2

CH 2

CH 2

Изолейцин

Триптофан

Лейцин

CH 2

CH 3

CH 2

CH 3

CH 3

NH 2


Образование пептидной связи

R 2

R 1

пептидная

связь

карбоксильная

группа

H 2 O

карбоксильная

группа

аминогруппа

аминогруппа

H 2 O

H 2 O

первая аминокислота вторая аминокислота

R 1

R 2

В белках аминокислоты соединены между собой пептидными связями(-NH-CO-) в полипептидные цепи.

Пептидные связи образуются при взаимодействии карбоксильной группы одной аминокислоты с аминогруппой другой.


Различают четыре уровня пространственной организации белков

Первичная структура

Строго определенная последовательность аминокислот, соединенных пептидными связями , определяет первичную структуру молекулы белка


Вторичная структура белка

полипептидная цепь, закрученная в α-спираль или β-складчатой структуры.

Она удерживается при помощи водородных связей, которые возникают между NH- и СО-группами , расположенными на соседних витках.

Функционирование в виде закрученной спирали характерно для фибриллярных белков (коллаген, фибриноген, миозин, актин и др.)


Третичная структура белка

Третичная структура – сворачивание спирали в сложную конфигурацию – глобулу, поддерживаемая дисульфидными связями (–S–S–), возникающими между радикалами серосодержащих аминокислот – цистеина и метионина.

Многие белковые молекулы становятся функционально активными только после приобретения глобулярной (третичной) структуры.


Четвертичная структура белка

Взаимное расположение в пространстве нескольких одинаковых или разных полипептидных клубков, составляющих одну белковую молекулу, образует четвертичную структуру (химические связи могут быть разные).

Гемоглобин

в эритроцитах


Уровни пространственной организации белков


Функции белков

  • ферментативная: выступают в качестве биологических

катализаторов, ферменты способны ускорять химические реакции;

  • строительная: белки являются обязательным компонентом всех

клеточных структур;

  • транспортная: перенос О 2 , гормонов в теле животных и человека;
  • двигательная: все виды двигательных реакций обеспечиваются

сократительными белками- актином и миозином;


Функции белков

  • защитная: при попадании инородных тел в организме

вырабатываются защитные белки – антитела.

  • энергетическая: при недостатке углевода и жиров могут окислиться

молекулы аминокислот (1 г белка-17,6 кДж энергии).

  • сигнальная: в мембрану встроены особые белки, способные

изменять свою третичную структуру на действие факторов внешней

среды. Так происходит прием сигналов из внешней среды и передача информации в клетку.


Углеводы –

вещества, состоящие из углерода, водорода и кислорода, состав которых можно выразить формулой С n (H 2 O) n

Углеводы можно разделить на 3 класса:

Моносахариды

Полисахариды

Олигосахариды

СН 2 ОН

НОСН 2

СН 2 ОН

НОСН 2

СН 2 ОН

НОСН 2

СН 2 ОН

СН 2 ОН

Дезоксирибоза

Целлюлоза

Рибоза

Сахароза

Глюкоза


Углеводы

Моносахариды – в зависимости от числа углеродных атомов в их молекуле различают триозы (3С), тетрозы (4С), пентозы (5С), гексозы (6С).

Свойства: малые молекулы легко растворяются в воде. Представлены кристаллическими формами, сладкие на вкус.

НОСН 2

НОСН 2

Глюкоза

Рибоза

Дезоксирибоза


Углеводы

Олигосахариды вещества, образованные несколькими моносахаридами (до 10);

Дисахариды объединяют в одной молекуле два моносахарида.

Свойства: растворимы в воде. Кристаллизуются. Сладкий вкус.

Глюкоза + Фруктоза = Сахароза

Глюкоза + Глюкоза = Мальтоза

Глюкоза + Галактоза = Лактоза

СН 2 ОН

НОСН 2

СН 2 ОН

Сахароза


Углеводы

Полисахариды – образуются путем соединения многих моносахаридов и имеют формулу (С6H10O5)n.

Наибольшее значение имеют полисахариды – крахмал, гликоген, целлюлоза, хитин.

Свойства:

макромолекулы нерастворимы или плохо растворимы в воде.

Не кристаллизуются. Не сладкие на вкус.

СН 2 ОН

СН 2 ОН

СН 2 ОН

Целлюлоза


Функции углеводов

  • энергетическая: при окислении 1г углеводов (до СО 2 и Н2О)

высвобождается 17,6 кДж энергии;

  • запасающая: запасается в клетках печени и мышц в виде гликогена;
  • строительная: в растительной клетке - прочная основа клеточных стенок (целлюлоза);
  • защитная: вязкие секреты (слизи) выделяемые различными

железами, богаты углеводами и их производными (гликопротеиды). Защищают стенки внутренних органов (пищевод, кишечник, желудок, бронхи) от механических повреждений и проникновения микроорганизмов;

  • рецепторная: входят в состав воспринимающей части

клеточных рецепторов.


Липиды

Разнообразие

Жиры

5 – 15% сухого

вещества клетки, в жировой ткани – 90%

Жироподобные вещества:

фосфолипиды;

стероиды; воски;

свободные жирные кислоты

Молекулы жиров образованы остатками трехатомного спирта (глицерина) и тремя остатками жирных кислот.

Главное свойство липидов - гидрофобность.

Жирные кислоты

+ 3H 2 O

Глицерин


Функции липидов

  • теплоизоляционная: у некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, которая у китов образует слой толщиной до 1 м, поддерживает постоянную температуру тела.
  • запасающая: накапливаются в жировой ткани животных, в плодах и

семенах растений;

  • энергетическая: при полном расщеплении 1г жира выделяется 39 кДж энергии;
  • структурная: фосфолипиды служат составной частью клеточных мембран;
  • регуляторная : многие гормоны (например, коры надпочечников, половые) являются производными липидов.

АТФ – аденозинтрифосфорная кислота

АТФ – макроэргическое соединение , содержащее химические связи, при гидролизе которых происходит освобождение энергии.

Аденин

NH 2

H 2 C

40 кДж

H 2 O

Рибоза

АТФ + H 2 O → АДФ + H 3 PO 4 + энергия (40кДж/моль)